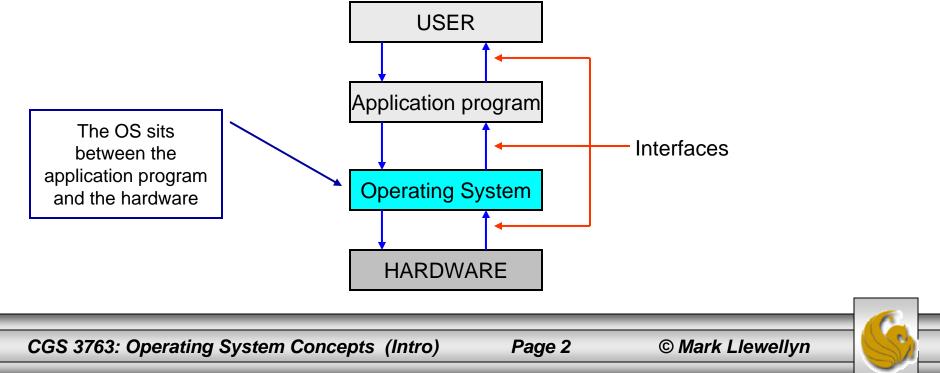
CGS 3763: Operating System Concepts Spring 2006

Introduction to Operating Systems

Instructor :	Mark Llewellyn
	markl@cs.ucf.edu
	CSB 242, 823-2790
	http://www.cs.ucf.edu/courses/cgs3763/spr2006

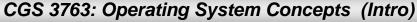

School of Electrical Engineering and Computer Science University of Central Florida

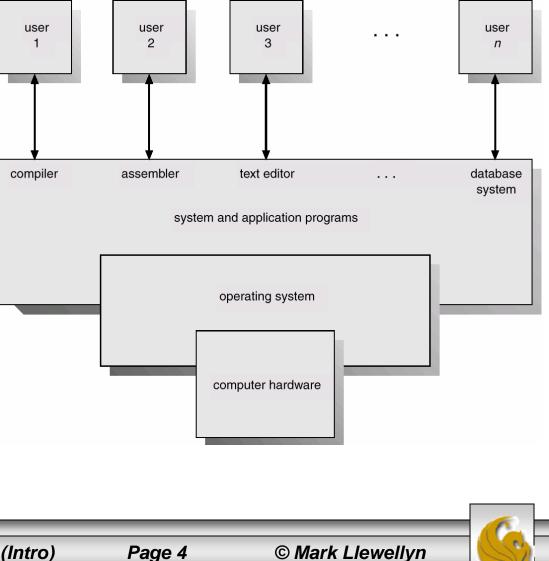
CGS 3763: Operating System Concepts (Intro)

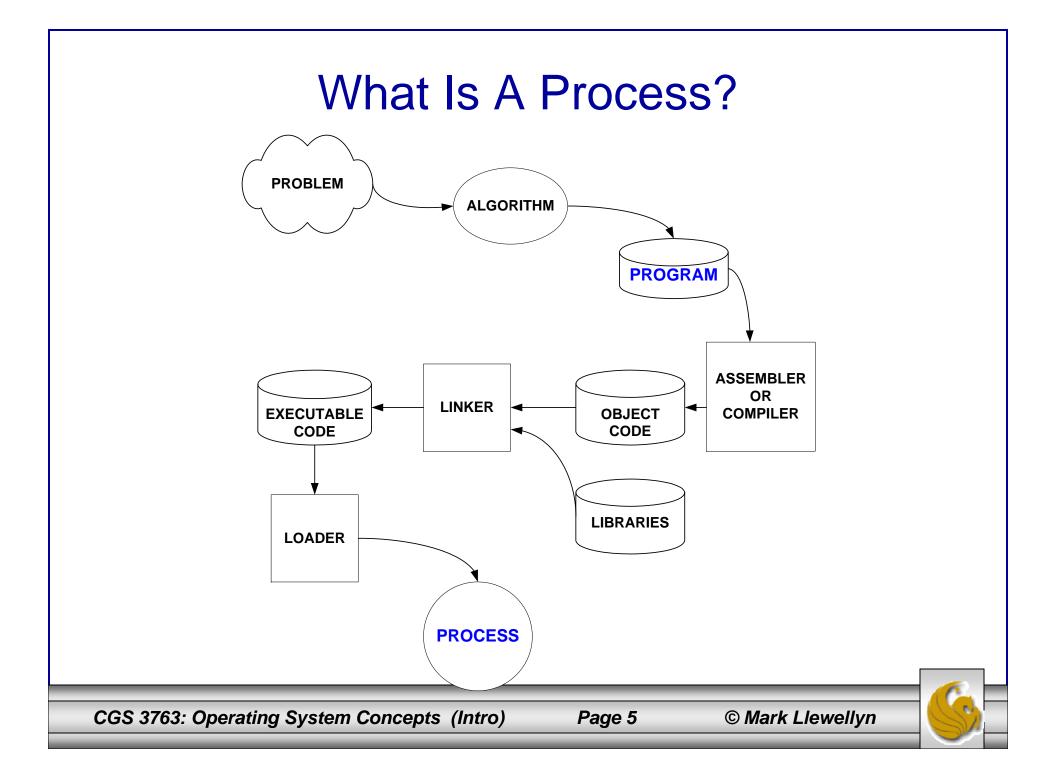
What is an Operating System?

• In the most general sense an operating system is a collection of system software routines that sit between an application program and the computer hardware on which that application is to be executed.

What is an Operating System? (cont.)


- For now, we can think of an OS as:
 - 1) is the interface or intermediary between a user/application and the computer hardware
 - 2) provides an environment in which the user can execute programs conveniently and
 - application and/or system software
 - 3) manages the computer's resources efficiently
 - memory, disk space, CPU time, I/O, software, etc.
- Often an OS is a tradeoff between convenience and efficiency
 - Windows (GUI) vs. Unix (command interpreter)





The OS As An Intermediary

- We'll discuss hardware later in Chapter 2.
- What's an application?
 - Software to accomplish a task
 - Spread sheet, word processor, browser, email
 - What about system software?
 - Depending on who you ask, can be considered application programs, a computer resource, or part of the OS

What Is A Process (cont.)

• A process:

- is a program in execution.
- has a process control block (PCB)
- has a program counter (PC)
- A process can have one or more *threads*.
 - A thread is sometimes known as a *lightweight* process

CGS 3763: Operating System Concepts (Intro)

Types of Operating Systems

- Focus on two system resources
 - CPU (processor) Utilization
 - Main Memory Utilization
- Utilization is measure of busy time over total study time (T_{busy}/T_{Total})
- In the old days computers were
 - physically very large
 - but very small in terms of resources and capabilities
 - also very, very expensive
- Important to achieve high utilization of resources

Early Systems

- Instructions and data written in binary
- Loaded using switches on front panel
- Computers also had a few buttons
 - Halt, Run, Load, Set PC (displayed contents), Increment PC
- Everything done by programmer the was no real "user" as we know them today
- Very slow set up time
- Very limited output (set PC and check lights)
- CPU sat idle much of the time.
- Very little wasted memory since RAM was so small.
 - Programmers always "squeezed" program into Main Memory

CGS 3763: Operating System Concepts (Intro)

Early Systems - Hardware Innovations

- Needed way to speed up Input & Output (I/O)
- Paper Tape
 - Data entry difficult, splicing needed or recopy tape
 - Paper tape output faster than looking at lights but hard to read.
- Punch Cards
 - Faster form of input.
 - Offline Card-to-Printer improved readability of output
- Magnetic Tape
 - Input even faster
 - Card-to-tape, tape-to-CPU, CPU-to-tape, tape-to-printer.

Page 9

• Disk drives as a replacement for tapes

CGS 3763: Operating System Concepts (Intro)

Early Systems - Software Innovations

- Assemblers
 - Symbolic programming rather than 1s and 0s
 - 1:1 relationship between assembler statements and machine instructions
- Linkers & Loaders
 - allowed the use of code libraries
 - didn't have to rewrite common code
- Compilers
 - Programming in High Level Languages (Fortran, COBOL)
 - 1:n relationship between a program statement and machine instructions
 - Eased programming task and improved operational efficiency.

CGS 3763: Operating System Concepts (Intro)

Early Systems - People/Procedural Changes

- Too much work for programmer
- Division of labor became necessary.
 - Divided tasks between a programmer and professional operator
 - Operator could now organize the work more effectively and "batch" jobs
- Batching
 - allows similar jobs to run sequentially
 - efficient use of system software
 - today, refers more to jobs which lack user interaction
 - Example, billing systems used by companies
 - still took long time to set up jobs
 - CPU frequently sat idle

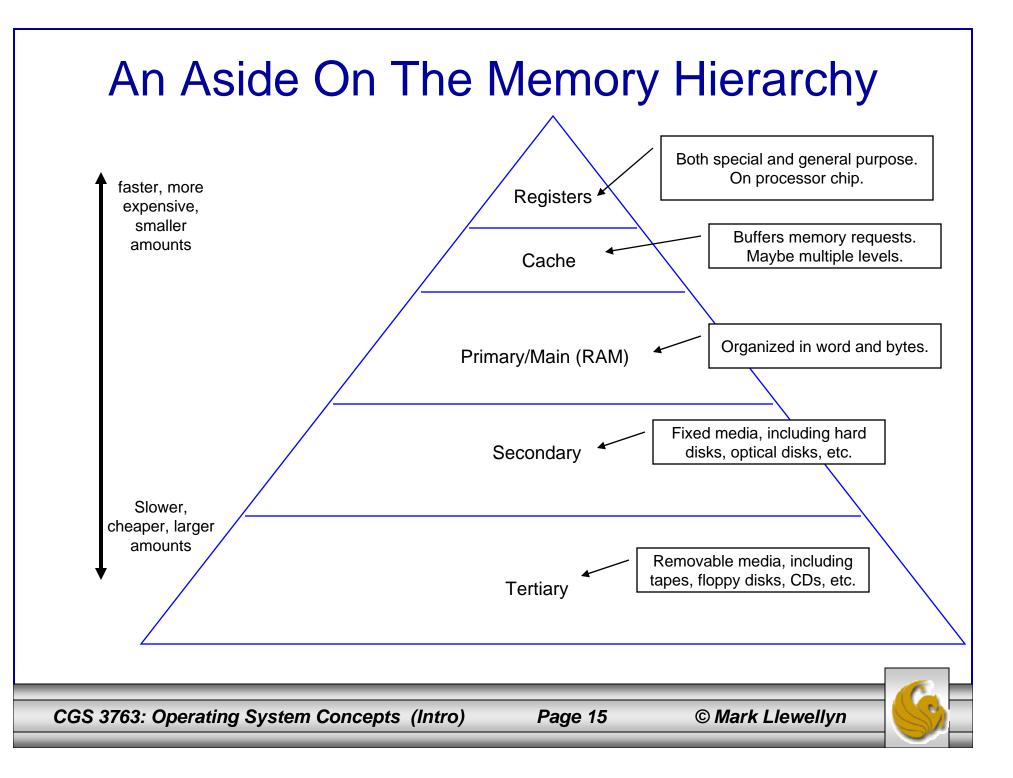
Running Multiple Programs

- Serial/Sequential Execution
 - One job must finish before next job starts
 - Results in very low utilization of resources
- Concurrent Execution
 - Two or more processes executing at the same time but doing different activities
 - Processes take turns using single shared resource
 - Gives the illusion of parallel processing
- Parallel/Simultaneous Execution
 - Two or more processes performing the same activity at the same time
 - Requires two or more of the same resource (e.g., processors, printers, disk drives)

CGS 3763: Operating System Concepts (Intro)

Resident Monitor

- Precursor to the Operating System
 - The beginnings of computer "self-governance"
- Resident in memory all the time, Monitored operations
- Primary task was job sequencing
 - In beginning read jobs sequentially from tape already prepared off-line
 - With disks, could select which jobs to run and when
 - Job Scheduling
- Resident Monitors Improved:
 - CPU Utilization: Faster setup, less idle time.
 - Memory Utilization: Sharing of I/O drivers/code
 - Functionality: Accounting and run time & I/O limits.



The Beginnings of Multiprogramming

- With RM, had two programs running serially:
 - Application RM Application RM Application, etc.
 - Application ran to completion before RM took over
- Reduced CPU idle time between jobs but not between I/O operations
 - I/O speed very slow compared to CPU speed
 - Much of I/O deals with accessing data (tape, disk)

Multiprogramming (cont.)

- Need some way to perform CPU and I/O operations at the same time
- Keep more than one user program in memory
- Switch between programs during I/O operations

Operating System
Process 1
Process 2
Process 3

CGS 3763: Operating System Concepts (Intro)

Multiprogramming (cont.)

- More efficient use of system, less idle time.
- Made possible because of reduced memory costs.
- Created a whole new set of problems:
 - Memory Management
 - Protection Mechanisms
 - Job Scheduling
 - CPU/Process Scheduling
- Improves resource utilization but not user interaction
 - "...manages the computer's resources efficiently..."
- What about conveniences
 - "...the user can execute programs conveniently..."

Time Sharing

- Introduced to improve the interaction with computer
 - Use of terminals and teleprinters
 - Allows user to input data and interact with program
- Give each process a slice of CPU time
 - Don't wait for next I/O operation
 - Similar to multiplexing
- Possible because user input is so slow
 - 1 char takes 1000 milliseconds to enter while only 2 milliseconds required for an interrupt handler
- Required the development of virtual memory, online file systems and directory structures
- Today's systems generally support a combination of batch and time sharing.

CGS 3763: Operating System Concepts (Intro)

Other Operating System Developments

- Real Time Response time is critical
 - Hard Real Time
 - Industrial & Robotic controls.
 - Very small bounded delays.
 - Little use of swapping or secondary storage.
 - Soft Real Time
 - Immediate response not as critical.
 - Monitoring devices, etc.
 - Longer delays tolerated
 - Use of secondary storage & priority scheduling.

CGS 3763: Operating System Concepts (Intro)

Other Developments (cont.)

- Personal Computers
 - Many of the OS features we'll study are incorporated in today's PCs.
 - Change in priority since hardware is cheap and only a single user.
 - Greater emphasis on convenience than on efficiency
 - Ultimate in interactive in a way, we've gone back to the early days
 - Adds new demands also networking and multimedia.
- Handheld Systems

Other Developments (cont.)

- Parallel vs. Distributed Systems vs. Clustered
 - Needed for various reasons: larger problems, larger data requirements,
 - Parallel/Tightly coupled –share resources (e.g., memory, clock, bus, OS, disks)
 - Asymmetric multiprocessing master/slave
 - Symmetric multiprocessing each processor has copy of OS
 - Typically used for scientific applications and simulations.
 - Distributed/Loosely coupled Separate computers linked via network.
 - Used for client/server applications
 - Peer-to-Peer applications
 - Clustered Systems
 - Computers linked by network but sharing storage

CGS 3763: Operating System Concepts (Intro)

Performance Measurements

- <u>Utilization</u> (maximize)
 - $U = T_{busy} / T_{total}$ where T_{total} is total study time, or - $U = T_{used} / T_{available}$

- <u>Throughput</u> (maximize)
 - X = C / T where C is number of completed jobs/processes and T is time frame
 - The rate at which requests are processed

CGS 3763: Operating System Concepts (Intro)

Performance Measurements (cont.)

- <u>Turnaround Time</u> (minimize)
 - Typically used in reference to batch systems
 - The time it takes to complete/execute a job/process

- <u>Response Time</u> (minimize)
 - Typically used in reference to interactive systems
 - The time it takes for the system to respond to a user request from submission to start of a response

